Complex Analysis: Midterm Exam

Aletta Jacobshal 01, Monday 19 December 2016, 09:00-11:00
Exam duration: 2 hours

Instructions - read carefully before starting

- Write very clearly your full name and student number at the top of the first page of your exam sheet and on the envelope. Do NOT seal the envelope!
- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas, theorems, formulas, etc.) you must explain why the conditions for using such results are satisfied.
- 10 points are "free". There are 5 questions and the maximum number of points is 100 . The exam grade is the total number of points divided by 10 .
- You are allowed to have a 2 -sided A4-sized paper with handwritten notes.

Question 1 (22 points)

Consider the function

$$
f(z)=u(x, y)+i v(x, y)=e^{x}(x \cos y-y \sin y)+i e^{x}(y \cos y+x \sin y)
$$

(a) (12 points) Prove that $f(z)$ is entire using the Cauchy-Riemann equations Hint: the CauchyRiemann equations do not allow by themselves to claim that the function is analytic; more conditions must be satisfied and they should be part of your answer.

Solution

We check the Cauchy-Riemann equations. We have

$$
\frac{\partial u}{\partial x}=e^{x}(x \cos y-y \sin y)+e^{x} \cos y,
$$

and

$$
\frac{\partial v}{\partial y}=e^{x}(\cos y-y \sin y+x \cos y) .
$$

Moreover,

$$
\frac{\partial u}{\partial y}=e^{x}(-x \sin y-\sin y-y \cos y),
$$

and

$$
\frac{\partial v}{\partial x}=e^{x}(y \cos y+x \sin y)+e^{x} \sin y .
$$

Therefore, we see that the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x},
$$

are satisfied.
Moreover, the partial derivatives exist and are continuous for all $x+i y \in \mathbb{C}$. This implies that f is differentiable on \mathbb{C} and since \mathbb{C} is an open set we conclude that f is entire.
(b) (10 points) Write $f(z)$ as a function of z (instead of x and y separately).

Solution

We rearrange terms in $f(z)$ and we find

$$
\begin{aligned}
f(z) & =e^{x} \cos y(x+i y)+e^{x} \sin y(-y+i x)=e^{x} \cos y(x+i y)+i e^{x} \sin y(x+i y) \\
& =e^{x}(\cos y+i \sin y)(x+i y)=e^{x} e^{i y}(x+i y)=e^{x+i y}(x+i y) \\
& =e^{z} z .
\end{aligned}
$$

Question 2 (18 points)

The principal value of arctan is defined as

$$
\operatorname{Arctan}(z)=\frac{i}{2} \log \frac{i+z}{i-z} .
$$

(a) (6 points) Compute $\operatorname{Arctan}(-1)$ using the definition of $\operatorname{Arctan}(z)$.

Solution

We have

$$
\begin{aligned}
\operatorname{Arctan}(-1) & =\frac{i}{2} \log \frac{i-1}{i+1} \\
& =\frac{i}{2} \log \frac{(-1+i)(1-i)}{(1+i)(1-i)} \\
& =\frac{i}{2} \log \frac{2 i}{2} \\
& =\frac{i}{2} \log i \\
& =\frac{i}{2}(\log |i|+i \operatorname{Arg} i) \\
& =\frac{i}{2}\left(\log 1+i \frac{\pi}{2}\right) \\
& =-\frac{\pi}{4} .
\end{aligned}
$$

(b) (12 points) Show that for $x \in \mathbb{R}$ we have $\operatorname{Arctan}(x) \in(-\pi / 2, \pi / 2)$. Hint: show that for $x \in \mathbb{R}$ we have $\left|\frac{i+x}{i-x}\right|=1$.

Solution

By definition we have

$$
\begin{aligned}
\operatorname{Arctan}(x) & =\frac{i}{2} \log \frac{i+x}{i-x} \\
& =\frac{i}{2}\left(\log \left|\frac{i+x}{i-x}\right|+i \operatorname{Arg} \frac{i+x}{i-x}\right) .
\end{aligned}
$$

We compute that

$$
\begin{aligned}
\left|\frac{i+x}{i-x}\right|^{2} & =\left(\frac{i+x}{i-x}\right) \overline{\left(\frac{i+x}{i-x}\right)}=\left(\frac{i+x}{i-x}\right)\left(\frac{-i+x}{-i-x}\right)=\left(\frac{i+x}{i-x}\right)\left(\frac{-(i-x)}{-(i+x)}\right) \\
& =\left(\frac{i+x}{i-x}\right)\left(\frac{i-x}{i+x}\right)=1 .
\end{aligned}
$$

Therefore,

$$
\left|\frac{i+x}{i-x}\right|=1,
$$

and

$$
\log \left|\frac{i+x}{i-x}\right|=\log 1=0
$$

This implies

$$
\operatorname{Arctan}(x)=-\frac{1}{2} \operatorname{Arg} \frac{i+x}{i-x} .
$$

Since for any $z \in \mathbb{C}$ we have $-\pi<\operatorname{Arg} z \leq \pi$ we can conclude that

$$
\frac{\pi}{2} \leq \operatorname{Arctan}(x)<\frac{\pi}{2}
$$

The equality with $-\pi / 2$ can only be valid if

$$
\operatorname{Arg} \frac{i+x}{i-x}=\pi \Leftrightarrow \frac{i+x}{i-x}=s
$$

for some negative real number s. Then we find

$$
i+x=i s-s x \Leftrightarrow(s+1) x=i(s-1) \Leftrightarrow x=i \frac{s-1}{s+1} .
$$

The last relation cannot hold for any $s<0$ since it would imply that x is purely imaginary. This means that $\operatorname{Arctan}(x) \neq \pi / 2$ and therefore

$$
-\frac{\pi}{2}<\operatorname{Arctan}(x)<\frac{\pi}{2}
$$

Question 3 (18 points)

Show that

$$
\left|\int_{C} \frac{e^{z}}{\bar{z}+2} d z\right| \leq \pi e^{2}
$$

where C is the positively oriented circle $|z-1|=1$.

Solution

On C we have that $0 \leq x \leq 2$ where $x=\operatorname{Re} z$. It is possible to see this by drawing C or by noticing that $x-1=\operatorname{Re}(z)-1=\operatorname{Re}(z-1)$ and we always have $|\operatorname{Re} w| \leq|w|$, so $|x-1| \leq 1$. Therefore,

$$
\left|e^{z}\right|=\left|e^{x} e^{i y}\right|=e^{x} \leq e^{2}
$$

Moreover,

$$
|\bar{z}+2|=|(\bar{z}-1)+3| \geq||\bar{z}-1|-3|=|1-3|=2 .
$$

Therefore,

$$
\left|\frac{e^{z}}{\bar{z}+2}\right| \leq \frac{e^{2}}{2} .
$$

This means

$$
\left|\int_{C} \frac{e^{z}}{\bar{z}+2} d z\right| \leq \frac{e^{2}}{2} \ell(C)=\pi e^{2},
$$

where, in the last step, we used that the length of the circle C of radius 1 is 2π.

Question 4 (18 points)

A function $f(z)$ is analytic in a domain D. Prove that if the modulus $|f(z)|$ is constant in D then the function $f(z)$ is constant in D.

Solution

We write $f(z)=u(x, y)+i v(x, y)$. If $|f(z)|$ is constant in D then $|f(z)|^{2}=u^{2}+v^{2}$ is constant in D.
Let $u^{2}+v^{2}=c$ throughout D. Then

$$
\frac{\partial}{\partial x}\left(u^{2}+v^{2}\right)=u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial x}=0,
$$

and

$$
\frac{\partial}{\partial y}\left(u^{2}+v^{2}\right)=u \frac{\partial u}{\partial y}+v \frac{\partial v}{\partial y}=0 .
$$

Using the Cauchy-Riemann equations we get

$$
u \frac{\partial u}{\partial x}-v \frac{\partial u}{\partial y}=0, \quad u \frac{\partial u}{\partial y}+v \frac{\partial u}{\partial x}=0 .
$$

Multiply the first equation by u and the second by v and add them together to get

$$
\left(u^{2}+v^{2}\right) \frac{\partial u}{\partial x}=0 .
$$

Then multiply the first equation by v and the second by u and subtract them to get

$$
\left(u^{2}+v^{2}\right) \frac{\partial u}{\partial y}=0 .
$$

We distinguish two cases. First, if $u^{2}+v^{2}=0$ (constant throughout D) then $u=0$ and $v=0$ in D which implies $f(z)=0$ is constant in D.
Otherwise, if $u^{2}+v^{2}=c \neq 0$ we get

$$
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0,
$$

and from here we conclude that u is constant in D. From the Cauchy-Riemann equations we get

$$
\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}=0, \quad \frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=0,
$$

implying that v is also constant in D and, in conclusion, that f is constant in D.

Question 5 (14 points)

Compute the value of the integral

$$
\int_{\Gamma} \frac{\cos (\pi z)}{(z-1)(z-3)^{2}} d z
$$

where Γ is the closed contour shown in Figure 1.

Figure 1: Contour Γ for Question 5.

Solution

The generalized Cauchy integral formula for $n=1$ and $z_{0}=3$ gives that for a function $g(z)$ analytic on and inside Γ we have

$$
\int_{\Gamma} \frac{g(z)}{(z-3)^{2}} d z=-2 \pi i g^{\prime}(3),
$$

where the minus sign comes from the fact that Γ is negatively oriented.
Choosing

$$
g(z)=\frac{\cos (\pi z)}{z-1},
$$

we note that it is analytic on and inside Γ so it satisfies the conditions for applying the formula. Therefore

$$
\int_{\Gamma} \frac{\cos (\pi z)}{(z-1)(z-3)^{2}} d z=-2 \pi i g^{\prime}(3) .
$$

We then compute

$$
g^{\prime}(z)=-\frac{\cos (\pi z)+\pi(z-1) \sin (\pi z)}{(z-1)^{2}},
$$

so

$$
g^{\prime}(3)=-\frac{\cos (3 \pi)+2 \pi \sin (3 \pi)}{4}=\frac{1}{4} .
$$

Finally,

$$
\int_{\Gamma} \frac{\cos (\pi z)}{(z-1)(z-3)^{2}} d z=-2 \pi i \frac{1}{4}=-\frac{\pi i}{2} .
$$

